

User Guide #0610 V1.2

IRMCx300 Software Developer’s Guide

By International Rectifier’s iMotion Team

Table of Contents

Page
1 Introduction.. 2

1.1 Purpose.. 2
1.2 Requirements... 2
1.3 Overview .. 5
1.4 Boot Process.. 5
1.5 Memory Map .. 7

2 MCEDesigner Agent.. 11
2.1 Sequencer.. 11
2.2 MceInfo Structure... 12

3 Setting Up the 8051 Development Tools............. 13
3.1 Software Setup... 13
3.2 Hardware Setup ... 15
3.3 Keil uVision Project Options... 16

4 Sample Code... 22
4.1 Sample Code Structure.. 22
4.2 Running the Motor.. 26
4.3 Extending Functionality .. 29
4.4 Troubleshooting ... 30

5 Programming the Control IC................................ 31
5.1 Programming the EEPROM with MCEDesigner 31
5.2 Using MCEProgrammer ... 32

6 Migrating from the F-version to the K-version 34
6.1 System Differences .. 34
6.2 Using MCEProgrammer2 to Program the OTP.................... 36
6.3 Creating Custom Programming Methods............................. 37

Paragraph annotation of the contents of this User Guide.

www.irf.com 1UG#0610

1 Introduction
The 8051 microprocessor, included in the IRMCx300 series of motion control ICs, can be used to
implement a large variety of control and protection functions for motor control applications. The
instruction set and basic operation of the IRMCx300 Series 8051 microprocessor is consistent
with the standard Intel 8051 processor. A number of peripheral devices and special functions
have been added to customize the operation for motor control applications.

The IRMCx300 series ICs contain two processors: an 8051 processor and the Motion Control
Engine (MCE). The 8051 and MCE interact through a shared RAM, accessible by both
processors. The MCE is designed specifically to implement motor control loops, process
feedback signals, and calculate PWM switching signals. The 8051 mediates between external
control signals (such as the front panel of a washing machine) and the MCE, which ultimately
produces the signals that operate the motor.

The 8051 software application controls and monitors the operation of the MCE through the
read/write register interface of the shared RAM. The 8051 code (MCEDesigner Agent) used with
the MCEDesigner tool can do this in two ways: in a simple lock-step manner, where
MCEDesigner specifies each register to be read or written individually and the 8051 software
performs only those operations as they are requested; or, for a limited number of functions, the
8051 will perform a sequence of operations, as described in Section 2.1. An 8051 user
application, on the other hand, would typically perform entire sequences of operations
automatically or in response to simple input commands such as “start” and “stop.”

1.1 Purpose
The purpose of this guide is to describe the implementation of 8051 microprocessor control for
use in the IRMCF300 and IRMCK300 series of motion control ICs. This document covers
required initializations, settings and functions for 8051 control of the IC. Some examples and the
sample code, IRSamples, are presented. This application note assumes that the user has
experience with embedded software programming and is also familiar with the Application
Developer’s Guide and one of IR’s Reference Design Kits.

The sample code and examples given here are intended to allow the designer to create a control
interface to replace MCEDesigner once the application development has been completed. One of
the main tasks is to recreate MCEDesigner functions in the 8051 code. Code development
should be performed with the RAM version of the IC (IRMCF300), for easy revision and
downloading. After code development and testing with the F-version of the IC, the embedded
8051 code is intended to be written to the OTP (one-time programmable) ROM of the IRMCK300
series ICs. The last section of this guide details the process of migrating the application code
from the F-version to the K-version of the IC. This guide will also describe the process of creating
and downloading of EEPROM code and the related boot load process for the IRMCF300 IC and,
analogously, the process of creating and writing the OTP image.

1.2 Requirements
The following software and hardware is required for 8051 application code development:

1. FS2 ISA-M8051EW Debugger with Keil uVision driver (FS2 debug pod), available at:
http://www.mips.com/products/software-tools/legacy/8051/

2. Keil PK51 Professional Developers Kit (Keil uVision2 or uVision3)

Using Keil uVision, the developer can write the control program in the C programming language
and then compile it into machine code for download to the IRMCF300 Series IC for testing.
uVision provides a simulation mode so that the portions of the program which are not hardware-
dependent can be tested without downloading to the actual IC. The sample source code,
IRSamples, provided with the Reference Design Kit was developed with Keil uVision.

www.irf.com 2UG#0610

http://www.mips.com/products/software-tools/legacy/8051/

In addition to the requirements above, the circuit board containing the IRMCF300 IC should
contain the appropriate connectors, drivers, and isolators to interface with the FS2 hardware. If
IR’s Reference Design Boards are used, the appropriate circuits are built in, with proper isolation
for the FS2 hardware connection. If any other hardware is used, follow the instructions in the
warning below.

Warning!
When connecting the FS2 debug pod to the circuit board, the FS2 hardware
can be damaged by the high voltage on the board if appropriate isolation is not
used. The problem arises because the DC bus minus (GND) is not at the same
potential as Earth (or wall) ground. For this reason, if proper isolation is not
used, it is recommended that the board be powered by a DC power supply with

isolated ground when using the FS2 hardware.

1.2.1 FS2 USB-based Debugger
Recently, a USB based JTAG debugger was released to replace the parallel port based model.
The USB version has a 10-pin header and bidirectional reset pin, in lieu of the 20-pin header and
dual reset lines. An adapter cable is available from the vendor, along with a schematic of the
required changes if an in-house cable needs to be created. The options to change the USB FS2
to a one-way reset are shown below. All of the Reference Design Kits have been updated to
interface with the 10-pin cable, but some IRMCS3041 kits in inventory may still have the old 20-
pin JTAG interface header. The IRMCS3012 and IRMCS3043 kits are configured to use the 20-
pin interface by default; to change to the 10-pin header, follow the instructions “Board
Conversion” below.

Cable Conversion
A schematic including the connector part numbers is shown in Figure 1 below. This can either be
implemented as a daughter card with connectors or as a single ribbon cable. Notice that the
‘Reset’ pin is now disconnected. This is the reset signal sent from the target to the FS2. This
signal is not required for debugging so long as the ‘reset button’ located on IR development
boards is not pressed. Pressing this button will cause the device to reset, but the debugger will
not be aware of it.

Figure 1—FS2 Cable Conversion Schematic

www.irf.com 3UG#0610

Board Conversion
The IRMCS3012 and IRMCS3043 boards can be changed from the old header (20-pin) to the
new header with a few component changes. The boards are configured to the 20-pin header by
default. To convert:

1) Remove Q7, U11 and R173
2) Install 0Ω resistors into R169 and R172
3) Setup FS2 Reset polarity as described below.

FS2 Configuration
The FS2 configuration will be different depending on which header is used. If the 20-pin header
is used, the following modifications must be made in the FS2 ‘configuration’ dialog shown in
Figure 2. These settings ensure that the reset signal is now one way to the target and that the
proper reset logic levels are used.

1) ResetNegated = ‘low’
2) ResetAsserted = ‘high’
3) Tck Rate = 500000 (500Khz)

If the 10-pin header is used, setup the FS2 as below to correctly configure for a bidirectional
reset.
.

1) ResetNegated = ‘high’
2) ResetAsserted = ‘low’
3) Tck Rate = 500000 (500Khz)

For either header, all other options should not be modified, as their default values are correct for
this application. Be careful not to reduce the Tck rate far below or above 500Khz as unpredictable
behavior may result.

When using Keil be sure to use the new driver included on the USB FS2 CD and not the older
parallel port one. The ‘FS2 Getting Started Guide’ covers exactly what to do. Be sure to install
Keil first, then FS2, so that the FS2 installation configures Keil to correctly control the FS2
hardware.

Figure 2—FS2 Configuration Dialog

www.irf.com 4UG#0610

1.3 Overview
There are two main parts of the code required for proper operation of the IRMCF300 Series IC,
the 8051 program and the MCE program, corresponding to the two processors in the IC. The
MCE program provides the PWM synchronous operations for calculation of the proper inverter
gating. A standard MCE program is supplied by IR in the form of “IRMCF341_appl_layers.bin,”
for the IRMCF341, for example. This program may be modified by the user, but it will have the
same file extension, “.bin”. The .bin file is the primary output of MCE Compiler. The 8051
provides application level control and asynchronous interrupts to modify settings in the MCE
program. This is generally developed by the user, though IR provides sample code called
“IRSamples.hex.” The .hex file is the output of the Keil uVision compiler. In this document, the
MCE and 8051 code images may be referred to as the .bin file and .hex file, respectively.

The next section describes the boot process of the F-version of the IC. During the boot process,
the on-chip RAM of the IC is loaded from the EEPROM. This boot process relies on the
EEPROM data to have the proper format; this format is specified in detail in the Reference
Manual, though the IR provided utility, IRProgrammer, can generate the EEPROM image for the
developer. At power up, the 8051 and MCE processor programs are loaded from the EEPROM
into the shared RAM of the IC, a map of which is provided in Section 1.5. The two processors
have different data addressing and byte ordering schemes, which are described in Section 1.5.2.

Section 5 of this guide covers the IR supplied programming tools that can be used to
automatically create a formatted EEPROM image. These tools, in combination with an FS2
Debugger, can be used for direct EEPROM programming without the need for dedicated 8051
code.

The .hex file, whose format is not described, is standard Intel hex format. Information on the Intel
hex record format can be found here:

http://www.keil.com/support/man/docs/oh166/oh166_ih_record.htm

1.4 Boot Process
The reset and boot processes are closely tied together. The boot process is automatically
accomplished following a proper reset sequence. Reset of the IC is triggered by any of the
following events:
1) Power up
2) Under voltage lockout (UVCC) detects low voltage on 1.8V.
3) The watchdog timer times out.
4) External reset, achieved by holding RESET pin low for a minimum of 10usec.

A user application cannot intervene during the reset and boot process. The main task of the boot
process is to copy the user application program stored in an external serial EEPROM to program
RAM, initialize the program counter and transfer control to the 8051 CPU.

Once the reset is recognized in the system, the reset module counts up to 2048 clocks at the
crystal frequency (i.e. 4 MHz, 512 μsec) to insure that the internal PLL becomes stable for
generation of the internal system clock. When this waiting period is complete, the boot module
begins copying the user program from external EEPROM to program RAM via the I2C port. The
time to complete the copy process depends on the size of the user program. The following
example calculates the time required to copy a 16K-byte program (total of both .hex and .bin
files):

Total user program to be copied: 16 * 1024 bytes
Number of bit periods to transfer one byte: 9 bits

www.irf.com 5UG#0610

http://www.keil.com/support/man/docs/oh166/oh166_ih_record.htm

I2C clock speed: 333 kHz, for a transfer time of 3 μsec per bit
Total transfer time: 16 * 1024 * 9 * 3 μsec = 442 msec

The time to complete the copy process varies depending on the actual size of the application
program and the I2C clock speed, which can be modified to accommodate various types of I2C
EEPROM devices. Immediately after the copy process completes, the 8051 application program
begins execution. For more detail on the boot process and setting the I2C clock speed, please
refer to the Reference Manual.

A 16-bit checksum follows the last byte of boot data, low-order byte first. The checksum is
calculated on all preceding bytes in EEPROM by summing all the bytes (one byte at a time,
ignoring any overflow beyond 16 bits), then negating (two’s complement) the resulting value.
When the IRMCF300 IC validates the checksum by adding all bytes, the 16-bit result should be
zero.

If it is not zero, the system halts with a checksum error and does not transfer control to the 8051
application program. There is no external indication of the error and no further operations are
performed until the device is reset. To diagnose such an issue, check the I2C bus during boot
(right after a reset). The SCL pin should show clock pulses, as data is transferred from the
EEPROM to the control IC, which should cease after the transfer. This indicates that the IC is not
damaged and is working properly. Next, use the JTAG interface to reprogram the EEPROM with
a known good image. If this image operates correctly, then there is strong likelihood that there is
a checksum error with the original image.

www.irf.com 6UG#0610

1.5 Memory Map

Figure 3—Memory Map of the IRMCF300 Series RAM

Figure 3 shows the default memory map of the IRMCF300 Series, which contains 48k bytes of
program and 8k bytes of data RAM. The lower 48k bytes of the RAM are allocated for the 8051
program (8051 addresses: 0x0000 – 0xBFFF). The top (highest memory address) 2k bytes of the
RAM are allocated as 8051 data (8051 RAM addresses: 0xF800 – 0xFFFF), which is shown in
Figure 4. The program and data RAM should be defined in the Keil compiler settings. For
example, for the default memory map, set the following fields, found at the BL51 Locate tab of
Options for Target:
Code Range: 0x0000-0xBFFF
Xdata Range: 0xF800-0xFFFF (2K)
The memory addresses shown in Figure 3 are from the point of view of the 8051 processor.
Memory addressing for the MCE is described below.

www.irf.com 7UG#0610

1.5.1 The Dual-Port RAM

Figure 4—Shared RAM area of IRMCF300 Series ICs

There are 8K bytes of data RAM that are accessible to both the 8051 and MCE processors. The
shared RAM (8051 external addresses: 0xE000 – 0xF7FF) comprises three sections, the
locations of which are given in Table 2 below.

Typically 512 bytes are allocated for MCE data beginning at address 0xE000. These locations are
used for MCE private storage and for information passed between the MCE and the 8051. Both
the 8051 and the MCE access this area of RAM for reading and writing. Up to an additional 5.5k
bytes are allocated for MCE instruction (program) space. The hardware loads the MCE program
into this area of RAM at power up (as described in Section 1.4). The 8051 should not read or
write this area of RAM during normal operation. The upper (highest memory address) 2k bytes of
RAM are available for 8051 data storage. The MCE does not access this area.

The boundaries between the three sections of RAM are dynamic and determined by the MCE
compiler at compilation time. The compiler always reserves 512 bytes for MCE data at address
0xE000, beginning the MCE program at address 0xE200. Depending on the size of the MCE
application program, the compiler may allocate less than the allotted 5.5k bytes for MCE program,
in which case more memory could be used for 8051 data RAM. For example, if the MCE program
is smaller than 3.5k bytes, 8051 data could begin at address 0xF000 instead of 0xF800.

www.irf.com 8UG#0610

Remember that the 8051 data range is defined in the Keil compiler options, as noted above.
Also, note that the MCE web compiler displays the total MCE program size in words (16 bit units).
Therefore, the displayed size must be multiplied by two to determine the program size in bytes.

For reference, Table 1 shows the size of the MCE reference designs. The size of the MCE
program code does not include the header, so it is slightly smaller than the .bin file.

IRMCF3xx IC Size (bytes)

371, 341 1588

343 2516

311, 312 3398

Table 1— MCE program file sizes

1.5.2 8051 vs. MCE Addressing
The only memory space which the MCE has access to is the shared RAM. Therefore, the MCE
address of 0x0000 corresponds to the address 0xE000 on the 8051 memory bus, as depicted in
Figure 4, above.

RAM Section Size 8051 Address
Range

MCE Address
Range

MCE Data RAM 0.5K bytes 0xE000 – 0xE1FF 0x0000 – 0x00FF

MCE Program RAM 5.5K bytes 0xE200 – 0xF7FF 0x0100 – 0x0BFF

8051 Data RAM 2K bytes 0xF800 – 0xFFFF 0x0C00 – 0x0FFF

Table 2—Memory addressing in the shared RAM

Table 2, above, specifies one address for 8051 use and another for MCE use. The MCE only has
access to the shared RAM, and the 8051 address of 0xE000 corresponds to MCE address of
0x0000. The 8051 addresses the RAM 8 bits (1 byte) at a time, while the MCE addresses the
RAM 16 bits at a time, requiring half the memory addresses to access the same data space. This
is reflected in the memory addresses listed in the table and Figure 4.

1.5.3 Byte Ordering
The Keil compiler used for 8051 software development generates code that uses big endian byte
ordering to store 16-bit and 32-bit values in memory. The MCE is a 16-bit processor and uses
little endian byte ordering for data storage. Functions to correctly read and write the shared RAM
are included in the sample code, IRSamples. These functions correctly swap bytes when
necessary, and lock out bus accesses to prevent data being read by one processor while it is still
being written by the other.

Byte ordering refers to the convention used to store 16-bit and 32-bit values in memory using a
processor, such as the 8051, that has a native addressing mode of 8 bits. The two standard byte

www.irf.com 9UG#0610

ordering conventions are “big endian” or “Motorola” byte ordering and “little endian” or “Intel” byte
ordering.

In big endian byte ordering, the “big end” of a value is stored first. That is, the high order byte is
stored at the lowest memory address and the low-order byte is stored at the highest memory
address. In little endian byte ordering the “little end” is stored first, with the low-order byte at the
lowest memory address.

For example, suppose the 16-bit value 0x2345 is to be stored in memory at address 0x1000.
Using big endian byte ordering, 0x23 is stored at address 0x1000 and 0x45 is stored at address
0x1001. Using little endian byte ordering, 0x45 is stored at address 0x1000 and 0x23 is stored at
address 0x1001. Table 3 below shows how the value 0x456789AB would be stored at address
0x1000 using each of the byte ordering conventions.

Address Big Endian Little Endian
0x1000 0x45 0xAB
0x1001 0x67 0x89
0x1002 0x89 0x67
0x1003 0xAB 0x45

Table 3—Big and little endian byte conventions

The Keil compiler used for 8051 software development generates code that uses big
endian byte ordering to store 16-bit and 32-bit values in memory.

The MCE is a 16-bit processor and uses little endian byte ordering for data storage. The smallest
unit of data storage on the MCE processor is 16 bits (it cannot access a single byte in memory).
The shared RAM used to exchange information between the 8051 and MCE processors is 8-bit
addressable to the 8051, but 16-bit addressable to the MCE.

The MCE expects all data shared between the 8051 and MCE processors to be in little endian
byte ordering. This means that the 8051 must swap bytes before writing to shared RAM and swap
bytes after reading from shared RAM. Table 4 below shows how the value 0x456789AB would
be correctly stored by the 8051 for sharing with the MCE. Note that the 8051 reads and writes a
byte at a time, but the MCE always accesses the memory a word (16 bits) at a time.

8051 Address 8051 Bytes MCE Address MCE Words
0xE200 0xAB
0xE201 0x89

0x0100 0x89AB

0xE202 0x67
0xE203 0x45

0x0101 0x4567

Table 4—Byte ordering for sharing of data between 8051 and MCE

1.5.4 Synchronizing 8051 Register Access with the MCE
In user applications, the 8051 may be required to monitor or modify MCE registers during motor
operation. There are some risks of errors when reading or writing to the dual-port RAM. To
guard against problems, the designer can use the SYNC interrupt to synchronize 8051 access
with the PWM cycles which dictate the updating of the inverter gating signal duty cycles.

The SYNC interrupt is generated from the MCE to signal the 8051 that a SYNC pulse has
occurred. The SYNC interrupt is a periodic event signal generated by the MCE. Its timing is
illustrated in Figure 5. This is the most important signal used for synchronization between the
8051 (CPU side) and the MCE (motion control side). An 8051 application software task that
needs to pass commands to the MCE and/or receive updated data from the MCE may require
specific synchronization with the MCE. This is due to the fact that MCE computation is initiated

www.irf.com 10UG#0610

and triggered by the SYNC pulse at every PWM carrier frequency period. It is also true that six
PWM outputs to the power device gate drive will occur at exactly one clock moment of the system
clock at the beginning of the SYNC event. If synchronization is not implemented and the 8051
application software writes multiple data items to the MCE via the shared RAM, it is possible that
some of the data are written in the previous MCE scan period while the rest of data are written in
the current MCE scan period. Therefore, 8051 application software should use the SYNC signal
for synchronization to insure that multiple data items are updated or read coherently within a
particular scan period.

The SYNC signal is also generated in an execution overrun fault condition, which occurs if the
MCE does not complete its processing (indicated by the bar labeled “MCE computation” in Figure
5) before the end of the PWM period (i.e., before the next SYNC pulse).

Figure 5. Timing of Sync and MCE Computation

A SYNC interrupt is generated for each component, motor 1 (M1), motor 2 (M2), and the PFC,
regardless if they are enabled in the IC. If some component is not used (for example the
IRMCx341 does not use M2 or PFC), set its PWM frequency to the same as that of another
component and also set the PwmSyncEnb bit to 1. This will ensure that the correct number of
SYNC interrupts is generated, with the correct timing. To distinguish between the SYNC
interrupts of the components, read the SYNCS register described in the Reference Manual.

2 MCEDesigner Agent
Up to this point, the main interface to the motor control IC has been MCEDesigner. Provided with
the Reference Design Kit is 8051 code designed to communicate with MCEDesigner over the
UART interface; this code is referred to as “MCEDesigner Agent.” The Agent’s main purpose is
to receive commands from the 8051 and, as a result, write to the MCE registers to perform the
high level motion control, such as start, stop, and change speeds.

2.1 Sequencer
The MCEDesigner Agent makes use of a sequencer structure to perform certain functions, which
are detailed below. In the case of a sequencer function, a number is written to an 8051 register,
SeqCmd, which specifies which function to run. The MCEDesigner Agent then executes a
sequence of register writes and delays to perform the function. The sequencer simplifies the
basic operations of motor control for the designer. To see the detailed list of actions that
sequencer functions execute, check the implementation of the functions in IRSamples. The
functions which the sequencer executes are:

 Start

www.irf.com 11UG#0610

 Stop
 Fault Clear
 Catch-Spin

In contrast, the Agent can be directed to write to specific MCE registers as specified in a
designer-created MCEDesigner function. This method gives the designer full control over the
specific instructions and settings of the MCE.

2.2 MceInfo Structure
When MCEDesigner reads an MCE program file (.bin) and formats it for storage in EEPROM, it
strips the header and creates the MceInfo structure, which contains the same information as the
header in a slightly different format. MCEDesigner formats the EEPROM to include the 8051
program, the MCE program and the MceInfo structure. The MceInfo structure is loaded to a fixed
location in 8051 program RAM during the hardware boot process.

The MceInfo structure is used by MCEDesigner to verify that the Register Map ID of the .irc file
matches the Version ID of the MCE program. If they do not match, then MCEDesigner give an
error. More information on this error can be found in the Application Developer’s Guide.

The MceInfo structure is not required by the hardware boot process, but is a standard component
of the 8051 MCEDesigner agent software as well as the 8051 sample source code. An 8051
application developed by the user is not required to define or make use of the MceInfo structure,
although the structure will be included in the EEPROM image if MCEDesigner is used to format
and program EEPROM.

The MceInfo structure is defined (in “C” language format) as follows:

typedef struct
{
 unsigned char validation [IDV_VALID_LENGTH];
 unsigned char numIdvDesignIdBytes;
 char idvDesignId [MAX_IDV_DESIGN_ID_LENGTH + 1];
 unsigned char numIdvVersionBytes;
 char idvVersion [MAX_IDV_VERSION_LENGTH + 1];
 unsigned char xdata * pLoadAddr;
 unsigned short loadSize;
 unsigned char xdata * pExecAddr;
 unsigned short xdata * pTraceAddr;
 unsigned char sysTracePage [16];
 unsigned short PageBase [8];
} MCE_INFO;

The relationships between fields of the MceInfo structure and fields of the binary file header are
shown in the table below.

MceInfo
Field

Binary Header
Field

Note

validation n/a This field is added by MceDesigner and has no
correspondence in the binary file header.
MCEDesigner sets this field to the ASCII string
“iMOTION” and the 8051 software uses it as an
indication that a valid MceInfo structure has
been copied from EEPROM.

numIdvDesignIdBytes ILEN The length of the design ID portion of the IDV
string (preceding the newline). The length does

www.irf.com 12UG#0610

not include the NULL terminator on the
idvDesignId string.

idvDesignId IDV The design ID portion of the IDV string
(preceding the newline character in IDV). The
idvDesignId string is NULL terminated.

numIdvVersionBytes ILEN The length of the version portion of the IDV
string (following the newline). The length does
not include the NULL terminator on the
idvVersion string.

idvVersion IDV The version portion of the IDV string (following
the newline character in IDV). The idvVersion
string is NULL terminated.

pLoadAddr LOAD
loadSize PGMLEN
pExecAddr EXEC
pTraceAddr TRCBASE
sysTracePage RTMAP The TracePage table (second 16 bytes of

RTMAP)
PageBase RTMAP The PageBase table (first 16 bytes of RTMAP)

Below, the user will find more information about how the IDV strings and RTMAP are used by
MCE Compiler:

IDV: The string has a variable length, specified by the value of the ILEN field. There is no
NULL terminator or pad character following the last byte of the string. The RTLEN field of the
header immediately follows the last byte of the IDV string. The IDV string identifies the Simulink
design that was compiled to create the MCE binary file. It is made up of the name of the model
file (minus the “.mdl” extension) and the version number of the model file (which is created
automatically by Simulink and updated whenever the model file is saved). Within the IDV string,
the design name and version number are separated by a newline character (0x0A).
MCEDesigner uses the IDV string to verify that its current database (loaded from a configuration
“.irc” file) is consistent with the MCE program loaded to memory on the target platform.

RTMAP: This field contains the PageBase table (8 16-bit words) followed by the TracePage
table (16 8-bit words). The PageBase table provides the base addresses of the read and write
registers defined in the Simulink design. The registers are divided into eight sections, with a base
address for each section. (Depending on the design and the device type, not all sections are
used.) The optional header file output by the MCE Compiler includes the definition and
initialization of a PageBase table containing the same information that is stored in the binary file
header. The TracePage table contains the page number (0 – 3) for each of the sixteen trace data
items allowed in the Simulink design. The TracePage table is associated with MCEDesigner’s
data monitoring feature, and serves no purpose if MCEDesigner is not being used.

3 Setting Up the 8051 Development Tools
This section explains how to get started with 8051 application software development using the
FS2 debug pod, Keil uVision tools, and the IRMCF300 Series IC. Though this guide applies to a
general hardware configuration, often the IRMCS3041 Reference Design Board is referenced as
a specific case. The IRSamples program as a whole is designed to work with the IRMCS3041
Reference Design Board, if another platform is intended be sure to read about the modifications
required in Section 4.3.

3.1 Software Setup
Keil uVision:

www.irf.com 13UG#0610

1. Start Keil uVision. Choose Project Open Project and open the file IRSamples.Uv2, which

is included with the sample code. In the “Project Workspace” window, click on the topmost
folder, IRSamples.

2. Choose Project Options for Target ‘IRSamples’. Select the Debug tab.
3. Click the radio button “Use:” and set the field to its right to Fs2/Keil ISA-M8051EW Driver,

as shown in Figure 6 below. If this option does not appear in the list, the FS2 software has
not been installed properly.

4. Click Setting and check that the Settings are: TckRate: 62500 and Tvcc Threshold: 2500.
All the other settings under “Options for Target ‘IRSamples’ should be configured
automatically. The Appendix to this application note lists all the options that should be
configured.

5. Press “OK” in the Settings window and then “OK” in Options window.

Figure 6—Debug Options window for a uVision project

HyperTerminal:

1. Open HyperTerminal (from Windows, choose Start Programs Accessories
Communications HyperTerminal).

2. If the New Connection window does not automatically appear, select File New
Connection. Choose a name and icon for your connection and press “OK.”

3. Under “Connect Using,” select the appropriate COM port. This will likely be the same port
that MCEDesigner uses to communicate with the control board. Press “OK” and the
Properties window will open. Set the “Bits per Second” field to 57600, “Flow control” to
None and verify the rest of the settings as shown below in Figure 7.

www.irf.com 14UG#0610

Figure 7—HyperTerminal connection Properties window

3.2 Hardware Setup
Connect the UART interface to the computer where you have installed Keil uVision and
MCEDesigner. On the IRMCS3041, this is achieved using an RS-232 (serial) cable from the
control board to the PC. Also, connect the FS2 debug pod to the control board. On the
IRMCS3041, the FS2 Pod interfaces to the control IC through the connector J11. If the
IRMCS3041 Reference Board is not used, follow the warning below.

Warning!
When connecting the FS2 debug pod to the circuit board, the FS2 hardware
can be damaged by the high voltage on the board if appropriate isolation is not
used. The problem arises because the DC bus minus (GND) is not at the same
potential as earth (or wall) ground. For this reason, if proper isolation is not
used, it is recommended that the board be powered by a DC power supply with

isolated ground when using the FS2 hardware.

Hardware and Software Start-up
To properly start up the board and software, follow these steps:

1. Apply power to the controller board, and then turn on the FS2 pod.
2. Start Keil uVision. Choose Project Open Project and open the file IRSamples.Uv2.
3. Choose Debug Start/Stop Debug Session. The FS2 Console should come up briefly and

a status bar in the lower left corner will display the progress in loading the 8051 code to
RAM, shown in Figure 8 below.

www.irf.com 15UG#0610

Figure 8—uVision window during 8051 program load.

4. Choose Debug Go.
5. Start HyperTerminal and open the connection set up above. The motor can be controlled

by commands sent through the HyperTerminal. (See section Motor Functions for
commands.)

6. To exit from Keil after testing, choose Debug Stop. Then Debug Start/Stop Debug
Session. The program may be terminated at this time.

Making changes to the sample code

1. To make changes to the sample code, copy all the files of the sample code into a new
directory.

2. Select all the files and right-click to select “Properties.” De-select “Read-only” and click
“OK.”

3. Open the new project and modify files as desired. Save files by choosing Files Save All.
4. To rebuild the machine code, choose Project Rebuild all target files. The compiler will

generate a new .hex file.
5. Follow the instructions in Hardware and Software Start-up to test the modified program in

hardware. If the hardware is still powered on after testing a previous revision of your
program, you can start at Step 3. It isn’t necessary to power the hardware off and back on
before redownloading.

3.3 Keil uVision Project Options
These are the options that should be set under Project Options for Target ‘IRSamples’. The
uVision project file (IRsamples.Uv2) is shipped with all options set as shown below.

www.irf.com 16UG#0610

 Device

 Target

www.irf.com 17UG#0610

 Output

 Listing

www.irf.com 18UG#0610

 C51

 A51

www.irf.com 19UG#0610

BL51 Locate

 BL51 Misc

www.irf.com 20UG#0610

 Debug

Note: The selection in the “Use:” box in the upper right of the Debug tab may not match this
image’s text exactly. Be sure that it says “Fs2” and “Driver.” Also, be sure to uncheck “Go till
main().”

 Utilities

www.irf.com 21UG#0610

4 Sample Code
The sample code included with the Reference Design Kit, IRSamples, is intended to be a simple,
easy-to-understand example. This program is not an efficient implementation with respect to
function timing and optimization of processor usage during wait times. Also, IRSamples, as
implemented, may not shut down the motor drive quickly enough in certain fault situations,
depending on the application.

The 8051 code can be used to implement more complex motor control functions than those
described in Section 4.2.3 below. For example, a washing machine “wash cycle” requires that the
motor accelerate rapidly in one direction, stop, and accelerate rapidly in the other direction. This
could be implemented in such a way that the number of rotations is dependant on the whether the
soil setting is low, medium, or high. Other operations that can be implemented include and auto-
rebalance or PFC sequencing.

Note that a command interface other than the UART may be used. For example, to receive
commands from the digital I/O pins, modify MotorCtrl so that it monitors the state of the SFRs
corresponding to the appropriate pins and then calls MotorSeq as needed.

Once the designer has set certain variables, such as the clock rate, these variables could be
stored in a configuration area of the EEPROM.

4.1 Sample Code Structure
The main functions that an embedded 8051 application performs are to configure the MCE with
the proper drive parameters and to start, stop, and regulate the speed of the motor. These are the
same functions performed by MCEDesigner; the difference is that the “intelligence” is transferred
from the host application (MCEDesigner) to the embedded 8051 application. Any MCEDesigner
function (a pre-defined series of register operations), including timing delays, can be implemented
directly in the 8051 application so that it can control the motor independently or with simple
external commands.

The 8051 controls and monitors the MCE by reading and writing interface registers. The registers
are described in the next section. The general steps that the embedded 8051 application must
perform are:

1. Initialize the hardware—set clock frequency, initialize counters and timers, etc.
2. Start the MCE—verify that a valid MCE program has been loaded and initialize the MCE

program counter
3. Configure the drive—write drive parameters to MCE registers for the desired motor
4. Start, stop, change direction, change speed—keep track of current state in order to

correctly implement command (e.g. don’t change direction if motor is running).
5. Monitor for faults—periodic interrupts handle external commands, reset the Watchdog

timer, check for faults/errors and shut down drive if necessary.

4.1.1 Clock Frequency
The MCE code must set-up the phase-locked loop to generate the SYSCLK frequency by writing
to the SFRs PLLF0 and PLLF1. The sample code already contains instructions to select between
32, 50, 64 and 128 MHz for the clock frequency. Simply uncomment the appropriate #define
statement in timer.h.

Based on clock frequency the code should set the proper baud rate, timer initialization and reset
values. These also are set up correctly when the clock frequency is selected in timer.h. However,
some drive parameters (such as PwmPeriod, which sets the PWM frequency) are also configured
based on the clock frequency. The user should regenerate the drive parameters from the
“MCEWizard” using the new clock rate. See Section 4.2.1 below.

www.irf.com 22UG#0610

4.1.2 Registers
There are several types of registers, listed and described below.

1. Special Function Registers (SFRs)—SFRs can only be accessed by the 8051
microprocessor. Only a subset of the SFRs is described in this Guide. A complete list and
description of the SFRs can be found in the Reference Manual. The SFRs can be used to:

• Initialize and modify processor registers
• Configure and read I/O ports
• Set the clock frequency
• Configure, initialize and reset timers
• Configure the UART
• Enable analog features such as op-amps
• Enter and exit low-power modes
• Configure and enable interrupts
• Read faults and status
• Configure and use I2C/SPI serial interface
• Read and write the fixed MCE registers
• Read and write the user-defined MCE registers

Since SFRs can only be accessed by the 8051 microprocessor, writing to these registers is
relatively simple. They are defined in irmcx3xx.h using a special “sfr” keyword. Each SFR is
assigned a name that corresponds to its memory address. In the sample code, the
convention is that SFR names are in all capitals. They can be written and read using the
name, as with any other variable. Below is an example of the SFR assignments that must
be made to set the clock frequency to 50MHz.

PLLF0 = 0x62; // set clock speed to 50 MHz
PLLF1 = 0xC0;
PLLF2 = 1; // switch to PLL clock
PLLF3 = 0;

2. Fixed MCE Registers (FREGs)—The FREGs are accessible by both the MCE and the 8051

microprocessor. The MCE accesses the FREGs through the Motion Peripheral Blocks, and
may modify a subset of them every PWM cycle. The 8051 microprocessor accesses the
FREGs through a set of dedicated SFRs. Most FREGs only need to be configured once
before running the motor, which can be done by the 8051 application. Additionally, the
8051 application will write to FREGs to start and stop the motor, or to adjust parameters
due to varying operating conditions.

Each FREG is defined in regIf.h with an alias that begins with “FREG_” and corresponds to
its memory offset. The functions DoRegRd and DoRegWr in the sample code are provided
to read and write these registers. These functions determine the type of register, and then
access the register through the dedicated SFRs. It is recommended that these functions be
used without modification as the specific sequence of operations is critical for correct
operation. Below is an example of writing the number “0” to Fixed MCE Register pwmctrl_1.

DoRegWr (FREG_pwmctrl_1, 0);

3. User-defined MCE Registers (RAM_REGs)—These registers are also accessible by both

processors. However, in contrast to the FREGs, the RAM_REGs are not fixed in memory.
The RAM_REGs are defined in the MCE Simulink design, and are assigned RAM
addresses by the MCE Compiler. The compiler outputs a header file that should be
incorporated into the 8051 code (detailed in Section 4.2.1). The name assigned to the
register has the format:

 <Simulink Sub-system>_<register name in Simulink>

www.irf.com 23UG#0610

Although RAM_REGs are directly addressable to the 8051 in the shared RAM, another
dedicated set of SFRs are used to access them in a controlled fashion that prevents data
corruption. (This is necessary because the MCE accesses the registers as a single 16-bit
operation while the 8051 requires two 8-bit operations.) The functions DoRegWr and
DoRegRd are provided in the sample code to read and write RAM_REGs through the
dedicated SFRs. Below is an example of setting the DC Bus Over-voltage Level (of the
Motor1 sub-system) to 172.

DoRegWr (Motor1_DcBusOvLevel, 172);

Note: In MCEDesigner, the FREGs can be distinguished from the RAM_REGs by looking at the
“Type” column in the right side of the Motor1 window. To see this column, click on “Register
Structure Definitions” on the left side of the Motor1 window. The “Type” column will show one of
the labels listed below:

Fixed Fixed MCE Register (FREG)
MCE User-defined MCE Register (RAM_REG)
OBS Obsolete Register
8051 Local 8051 register (created for MCEDesigner access to 8051

variables)

4.1.3 Files and Functions of Sample Code
The sample code is composed of several C source files, which divide the functions into groups
according to their use. The .c files are:

1. main.c — Execution begins here. The main function calls each of the samples. The last
sample function, MotorCtrl, does not return.

2. regif.c — This file contains functions to read and write 16-bit registers in shared RAM with

guaranteed coherency using 8051 SFRs. See RtlRegs.SRC for the low-level
implementation of the FREG interface and Coherent.SRC for an implementation of the
RAM_REG interface. Examples of calls to the register interface functions can be found in
MotorCtrl.c.

3. EepromI2C.c — This file contains sample code to read and write the EEPROM using the

I2C interface.

4. Timer.c — This file contains a function that initializes timer 1 to generate interrupts at 2

msec intervals. A global variable "systicks" is incremented on each interrupt and the
FREG_FaultFlags register is checked for a fault condition. The interrupt service routine also
resets the Watchdog timer. The Watchdog timer must be reset periodically; otherwise the
IC as a whole will reset. Timer setup varies based on the clock rate, which is set in timer.h.

5. MceBoot.c — This file contains functions to initialize the MCE using code that has been

programmed to EEPROM by the MCEDesigner tool. It assumes that the automatic boot
process has copied the MCE code from EEPROM to shared RAM and an "MCE Info"
structure from EEPROM to a fixed location in 8051 program RAM. See Section 2.2 for the
description and function of the MCE Info structure.

The function StartMce first copies the "MCE Info" structure from 8051 program RAM to a
location in data RAM and verifies the validation field in the structure. If the validation field is
incorrect, the entire structure is assumed to be invalid and the MCE is not initialized.
Otherwise, the MCE Info structure provides the starting load address in RAM and the MCE
execution address. The StartMce function uses this information to zero the MCE data area

www.irf.com 24UG#0610

preceding the start of the MCE program. The function doMceBoot is called to initialize the
MCE special registers and begin MCE execution.

6. asyncDriver.c — This file contains functions to set up the UART and read and write data

using FIFO (first-in-first-out) buffers. For IRMCx300 versions that support two UARTs, the
code can be compiled for UART1 by commenting out line 20, which defines USE_UART0.
The following functions are included in the file:

 sioIsr - This is the UART interrupt service routine, which handles transmit and receive

interrupts. Received characters are placed in the receive FIFO. Characters to be
transmitted are taken from the transmit FIFO.

 sioInit - This function initializes the transmit and receive data structures and the SFRs that

control the UART.

 flushTx - Initializes the transmit FIFO.

 flushRx - Initializes the receive FIFO.

 setBaudRate - Inializes the baud rate SFR for 57,600 bps, based on the default clock rate

of 64 MHz.

 putChar_ - This function is called from a higher level (such as the MotorCtrl function) to

transmit a character. If the transmitter is currently busy, it adds the character to the transmit
FIFO. If no transmission is already in progress, it writes the character directly to the UART
transmit buffer. The function returns 0 if the transmit FIFO is full (character cannot be
accepted for transmission); or 1 if successful.

 getChar_ - This function is called from a higher level to read a received character from the

receive FIFO. It returns 0 if the receive FIFO is empty (no character available) or 1 if
successful.

 xFifoRoom - Called from putChar_ to check the status of the transmit FIFO. Returns 0 if

the transmit FIFO is full; 1 otherwise.

 xFifoPutChar - Called from putChar_ to add a character to the transmit FIFO. Returns 0 if

the transmit FIFO is full; 1 if the character was successfully added to the FIFO.

 xFifoGetChar - Called from sioIsr to get the oldest character from the transmit FIFO.

Returns 0 if the transmit FIFO is empty; 1 if a character is removed from the FIFO.

 rFifoRoom - Called from sioIsr to check the status of the receive FIFO. Returns 0 if the

FIFO is full; 1 if the received character was successfully added to the FIFO.

 rFifoPutChar - Called from sioIsr to add a character to the receive FIFO. Returns 0 if the

receive FIFO is full; 1 if the character was successfully added to the FIFO.

 rFifoGetChar - Called from getChar_ to get the oldest character from the receive FIFO.

Returns 0 if the receive FIFO is empty; 1 if a character is removed from the FIFO.

 IMPORTANT NOTE: The transmit and receive FIFOs are manipulated from both the

interrupt level and the "task" (non-interrupt) level. For this reason, it is very important to
ensure that UART interrupts are disabled while characters are added to and removed from
the FIFOs at the task level.

www.irf.com 25UG#0610

7. MotorCtrl.c — This file contains a simple example of motor drive configuration and control.

It reads character commands from the serial port using the functions provided by the UART
driver. You can use a HyperTerminal (or equivalent) connection to send commands and
read responses. A list of supported commands and their descriptions can be found in
Section 4.2.3.

The function MotorCtrl checks that the MCE versions defined in regif.c and loaded from the
EEPROM match, before allowing motor control operations. For more information, see
section 4.2.2.

8. RtlRegs.SRC — Assembly-language functions to read and write RTL registers through the

SFR interface. These functions are called by DoRegWr and DoRegRd.

9. Coherent.SRC — Assembly-language functions to read and write shared RAM registers

using SFR registers for coherent data transfer. These functions are called by DoRegWr
and DoRegRd.

10. utils.c — Utility functions to enable and disable a particular interrupt, identified by the

interrupt number, as defined at the beginning of the file.

4.2 Running the Motor
4.2.1 Drive Configuration
After power-up, the motor will not run properly until the MCE has been configured with the correct
parameter settings. These drive parameter values are generated using the “Parameter
Configurator” (Excel spreadsheet). The second tab of the spreadsheet contains the correctly
scaled values for the MCE registers. These values should replace the sample values defined in
parameters.h. This process can be somewhat automated by exporting the sheet in text format
and then adding “#define” at the start of each line.

4.2.2 MCE Header File
The MCE code is generated when the Simulink model file is compiled. The compiler also
produces a header file (.h) which contains 1) definitions of user-defined MCE registers, 2) register
map structures for addressing of the user-defined MCE registers, and 3) product and version
identification. This code should replace the samples at the top of regIf.c and regIf.h. In regIf.h,
replace the section titled “COMPILER GENERATED DEFINITIONS” with the corresponding
section in the MCE Compiler header file. Specifically, replace the following sections in regIf.h:

/* Product ID, Design ID and Version strings */
char ir_productID = 61;
char ir_designID [] = "IRMCS3041_Release_2_0";
char ir_vers [] = "1.301";

RegMapType RegMap [] = {
 { 2, 6, 0, 16 }, /* 0 */
 { 2, 4, 0, 16 }, /* 1 */

. . .

. . .

. . .
 { 3, 2, 0, 16 }, /* 25 */
 { 3, 0, 0, 16 }, /* 26 */
};

unsigned short PageBase [] = {
 0xE000,

www.irf.com 26UG#0610

. . .
. . .
. . .

 0x0000,
};

Similarly, in regIf.c, replace the section, reproduced below, titled “COMPILER GENERATED
INITIALIZATIONS” with the corresponding code in the header file.

/* Register map array indexes */
#define Motor1_CriticalOV_Fault 0
#define Motor1_LV_Fault 1

. . .

. . .

. . .
#define Motor1_TargetSpeed 28
#define Motor1_VhzEnable 29

/* Definitions for Page field in RegMap and indexes into PageBase */
#define PAGE0_RD 0

. . .

. . .

. . .
#define PAGE3_WR 7

Note that the MCE design ID and version number of the header file must match that of the MCE
code loaded from the EEPROM for correct operation. If the Simulink model is changed, then a
new header file must be created during compilation and added to the code as described in the
paragraph above.

The sample code is configured to correctly write to the RAM_REGs of the IRMCS3041 Reference
Design Kit and has the proper drive parameters to run the Golden Age GK6040-6AC31 motor.

4.2.3 Motor Functions
The sample code treats the motor as a state machine, with three states: DRIVE_IDLE,
DRIVE_RUN and DRIVE_FAULT. The function MotorCtrl takes input commands from the serial
port and passes valid ones to MotorSeq. Based on the current motor state, MotorSeq calls
appropriate functions to implement the command or returns an error indicating that the command
was invalid. If an invalid command is entered, ‘Invalid Command’ is returned to the
HyperTerminal display. Listed below are the commands supported from the function MotorCtrl,
with explanations of their operation.

C or c
Configure motor drive and clear faults. ‘Configured’ will be echoed back on the UART if
successful. If the motor is running, the command is ignored and ‘Invalid Command’ is returned
instead. See section 4.2.1 above.

+
Set forward direction. ‘Forward’ is echoed when the operation is complete. If the motor is running
or in a fault condition, the command is ignored and 'Invalid Command' is sent instead.

-
Set reverse direction. ‘Reverse’ is echoed when the operation is complete. If the motor is running
or in a fault condition, the command is ignored and 'Invalid Command' is sent instead.

F or f

www.irf.com 27UG#0610

Clear fault condition. ‘Fault Clear’ is echoed when the operation is complete. If the drive is not in a
fault condition, the command is ignored and 'Invalid Command' is sent instead.

G or g
Run motor. The motor is placed in run state and turns in the configured direction at a low speed.
‘Started’ is echoed when the operation is complete. If the motor is already running or in a fault
condition, the command is ignored and 'Invalid Command' is sent instead.

S or s
Stop motor. The motor is stopped and ‘Stopped’ is echoed when the operation is complete. If the
motor is already stopped or in a fault condition, the command is ignored and 'Invalid Command' is
sent instead.

R or r
Set motor speed. This is a multi-character command. The command character must be followed
by exactly four decimal digits (0 - 9) defining the target speed in rotor RPM. If the motor is not
running the command is ignored and 'Invalid Command' is echoed. If the requested speed is out
of range for the motor (according to the value of “#define Mtr_Max_Speed”) then the
Mtr_Max_Speed value will be used. Otherwise, the operation is performed after all four digits
have been received, at which point ‘Speed Set’ is echoed. If a character other than a digit is
received, an 'X' is echoed and the command is aborted.

?
(1) Get motor speed. This command returns the motor speed when the drive is running. The
current speed is output in motor RPM. This RPM calculation relies on the parameters generated
by the parameter configurator.
(2) Read FaultFlags. When the drive is in a fault state, this returns the value of the FaultFlags
register. The register value is displayed in hexadecimal format.

H or h
Catch-Spin Start. This begins the catch-spin startup sequence for the motor. The system will
monitor the speed and direction of the motor to determine if the motor should be stopped and
reversed, or if the motor is already going in the correct direction and catch it. This startup mode is
suitable for an instance where the motor may already be in motion due to outside forces (such as
wind blowing a fan). This command is allowable only in the idle state, otherwise ‘Invalid
Command’ is echoed. At the end of the sequence, ‘CatchSpin Complete’ is echoed.

T or t
Ramp Stop. This function will slowly ramp the motor down to zero speed. This is opposed to
simply stopping the motor by halting the PWM. Upon successful stopping of the motor ‘Ramp
Stop Complete’ will be echoed. The rate is determined by the rampTime variable, which is the
time in seconds to ramp to zero.

Z or z
Zero Vector Brake. This function will turn on the zero vector brake command for 20 seconds,
then halt the PWM and turn off zero vector brake. In the case of a fault, the function will break
out of the 20 second wait time and halt the PWM.

> Write to Register.
< Read from Register.
When one of these commands is given, the controller will prompt the user for register number,
which is a three digit number which correspond to the register’s address. If it is an RTL register,
then the register number = (Address found in the Reference Manual + 256). For an MCE
register, the register number can be found in the .h or .map file output from the MCECompiler.
Alternatively, the register numbers for both types of registers can be found in regif.h. If the write

www.irf.com 28UG#0610

command is given, then the controller will prompt for the value to be written, which is a five digit
number. This command is valid regardless of the sequencer state.

4.3 Extending Functionality
IRSamples only allows control of a single motor, without PFC, and is configured to work only with
development kit release MCE program. It is likely that new register names are defined in a new
MCE implementation. If this is the case then modifications to the base IRSamples is required.

<Simulink Sub-model>_<register name in Simulink>

Most likely the Sub-model and possibly register names will change between MCE designs. These
names are hard-coded into the uVision project and will need updating. The Fixed-Registers are
also hard-coded into the uVision project, but they are constant across the 300 series product
family.

Before making changes to the IRSamples code for a new MCE, import the new motor parameters
and the new header (*.h) file from the MCE Web Compiler.

4.3.1 Modifications Required For New MCE Register Names
These MCE register names, such as ‘Motor1_MotorSpeed’ may be modified to
‘Compressor_MotorSpeed’ in the .mdl MCE design file. If such a modification occurs, it is
necessary to not only update the regif.h and regif.c files as outlined previously, but also to modify
all references to the old MCE register name in IRSamples. Most of these modifications will be
located in MotorCtrl.c’s MotorSeq function or Timer.c’s Timer1 function . An example of this would
be…

DoRegWr (Motor1_TargetDir, 0);

Which would need to be changed, in the case of IRMCx312, to…

DoRegWr (Compressor_TargetDir, 0);

After properly converting the old names to the new MCE register names, the system should
successfully compile. If compilation errors arise, be sure to verify that some old register names
were not missed and left in the system. This step can be quickly and accurately performed with
the Find-Replace function in uVision.

4.3.2 Considerations for IRMCx341/371
The 341/371 products do not have any special considerations at this time.

4.3.3 Considerations for IRMCx343
1. Although IRMCx343 has PFC capability, IRSamples does not include any PFC

sequencing. If PFC functionality is to be added it is necessaryto enable two additional op-
amps; PFC current, and VAC. This is accomplished by setting the ‘HWCFG’ SFR to
‘0xC1’. It is best to set the HWCFG register in the main.c file, before calling the MotorCtrl
function.

‘HWCFG = 0xC1’;

2. The STOPS SFR should be set to choose the source of the PFC GATEKILL.

3. If PFC functionality is added, the PwmSyncEnb register must be enabled (1) so that
proper PFC to Motor 1 synchronization is maintained.

www.irf.com 29UG#0610

4. The FREG_syscfg register must be set to ‘5’ if PFC sequencing is to be implemented.

5. Fault Masking in the Timer.c’s Timer1 function must be modified to not mask PFC

GateKill if PFC sequencing is to be implemented.

4.3.4 Considerations for IRMCx311/312
1. Although IRMCx311 has PFC capability, IRSamples does not include any PFC

sequencing. If PFC functionality is to be added it is necessary to enable three additional
op-amps; PFC current, VAC, and Motor 2 current. This is accomplished by setting the
‘HWCFG’ SFR to ‘0xD7’. It is best to set the HWCFG register in the main.c file, before
calling the MotorCtrl function.

‘HWCFG = 0xD7’;

2. The STOPS SFR should be set to choose the source of the PFC GATEKILL.

3. If PFC functionality is added, the PwmSyncEnb register must be enabled (1) so that
proper PFC to Motor 1 synchronization is maintained.

4. Fault masking in the Timer.c’s Timer1 function must be modified to not mask PFC

GateKill if PFC is implemented. Fault masking will also need to be modified if Motor 2 will
be used instead of Motor 1.

5. The FREG_syscfg register must be set to ‘5’ if PFC sequencing is implemented or should

be set to ‘3’ if Motor 2 is used. FREG_syscfg should be set to ‘1’ if both PFC and Motor 2
are used.

6. With the IRMCx311/312 device it is now possible to use Motor 1 instead of Motor 2 as

IRSamples does. To make this transition nearly all of the MCE defined registers must be
modified to their Motor 1 (referred to as ‘fan’ in dev. kits) counterparts. This will also
require that any motor specific FREG registers (FREG_Rotation_2) be changed to their
Motor 1 version (FREG_Rotation_1). Most of these registers will be located in the
MotorCtrl.c or Timer.c file and will always end with a _1 or _2 if they are motor specific.

7. If changing to Motor 2 the following registers will need to be commented out in the

‘configure’ function. These registers are not used in the Motor 2 configuration, but are in
Motor 1.

• ModLim
• VqLimFilBw
• FwkSpd
• VqLim (MCE Register)

4.4 Troubleshooting
When a debug Session is started, the message “***error122: AGDI: memory read failed” appears
in the Output Window.

⎯ Check that the FS2 debug pod is connected to the parallel port and is turned on.
⎯ Under Project Options for Target ‘IRSamples’, click on the Debug tab and then the

Settings button and verify that the Comm Port setting is Lpt1 (or the correct one for your
PC.)

No characters echoed in HyperTerminal:

⎯ Check that the FS2 debug pod is properly connected to hardware and turned on.
⎯ Under Project Options for Target ‘IRSamples’, click on the Debug tab and verify that

“Use:” is set to Fs2/Keil ISA-M8051EW Driver. Check that the Settings are: TckRate:
62500 and Tvcc Threshold : 2500.

www.irf.com 30UG#0610

⎯ Check that the computer running HyperTerminal is connected (by serial cable) to the

hardware. Also, verify that HyperTerminal is using the correct port with the correct
communication options as described earlier in this document (Software Setup). The
COM port should be the same one that MCEDesigner uses.

LED does not change from red to blinking green after the drive is configured (c or C in
HyperTerminal) (for IRMCS3041)

⎯ Check that DC bus voltage is within range and not causing a fault.

LED changes from red to blinking green (for IRMCS3041) after the drive is configured, but the
motor does not turn when commanded.

⎯ Check that the correct drive parameters are entered into MotorControl.h
⎯ Check that the MCE is properly started—Set a break point in MCEBoot.c to see whether

doMceBoot is called. If not, the MceInfo structure may be incorrect, or the memory
address, RomMceInfo may be incorrect.

5 Programming the Control IC
5.1 Programming the EEPROM with MCEDesigner
5.1.1 Downloading 8051 Code to EEPROM with MCEDesigner
Once the 8051 application code has been fully tested using the FS2 Pod and Keil uVision, the
code may be downloaded to the EEPROM for stand-alone testing. To do so, follow the steps
below:

Figure 9—Load Target in MCEDesigner

1. Power down the controller board, then the FS2 debug Pod. Disconnect the FS2 Pod from

the controller board.
2. Power up the board and start MCEDesigner. Open an .irc file for your controller board.
3. Click on the System window and then select Tools Load Target. The Load Target window

is shown in Figure 5 above.
4. Select “MCE and 8051 to EEPROM.” Choose the appropriate MCE program and, for the

8051 program, the .hex file created by uVision.
5. When the download is complete (about two minutes), power down the controller board and

wait for the COM to go Down.
6. Power up the board, and the COM should stay Down. Close MCEDesigner to release the

COM port.

www.irf.com 31UG#0610

7. Start HyperTerminal (or other UART communication program) and verify that motor control

functions operate correctly.

5.1.2 Restoring the Original 8051 Code
After stand-alone testing, the user may want to restore the original 8051 code (MCEDesigner
Agent) to the EEPROM so that application development can be continued with MCEDesigner. To
do so, follow the steps below:

1. Power down all equipment. Connect the computer and FS2 Pod to the controller board.
2. Power up the FS2 Pod, then the controller board.
3. In uVision, open the project corresponding to the MCEDesigner 8051 code (e.g.

IRMCx341Lib.Uv2). Choose Debug Start/Stop Debug Session. Wait for the program to
load. Then select Debug Go.

4. Open MCEDesigner and COM should come Up (green).
5. Click on the System window and then select Tools Load Target.
6. Select “MCE and 8051 to EEPROM.” Choose the appropriate MCE program and, for the

8051 program, the .hex file corresponding to the original code (e.g., IRMCx341Lib.hex).
7. When the download is complete (about two minutes), power down the controller board and

wait for the COM to go Inactive. Stop the debugger and end the debug session. Turn off
and disconnect the FS2 Pod.

8. Power up the board, and COM should come Up once again. The system is now ready to
take commands from MCEDesigner.

5.2 Using MCEProgrammer
MCEProgrammer is an IR supplied utility to generate and program EEPROM images or OTP
images. This section will only describe EEPROM image generation and programming with
MCEProgrammer. Using the utility for OTP image generation and programming is covered in
Section 6.

5.2.1 Generating an EEPROM Image
MCEProgrammer is a command-line script which takes an MCE ‘.bin’ and 8051 ‘.hex’ file and
then creates an EEPROM image. There are multiple output formats shown below.

1. FS2 TCL Script. This is the default output format, and can be input to the FS2 Console
application to program the EEPROM directly through the JTAG interface.

2. Binary file. This is a raw data file containing a binary image of the data to be
programmed to EEPROM and can be used with an external device such as a gang
programmer.

3. Initialized C array. This is a ‘.c’ file which can be added to an 8051 uVision project to
program the EEPROM.

The MCE Info structure can also be automatically included if MCE Designer or IRSamples are
being programmed to EEPROM. There are three possible configuration options for the MCE Info
structure.

1. MCE Info for MCEDesigner. MCEDesigner expects to find the MCE Info structure in the
8051 program RAM at address 0x5FA0 for the IRMCF34x and IRMCF371 devices and at
address 0xBFA0 for the IRMCF31x devices. If you are programming the MCEDesigner
Agent software to EEPROM, you must include the MCE Info structure at the proper
address or the Agent will not initialize the MCE processor.

2. MCE Info for IRSamples. IRSamples expects to find the MCE Info structure at address
0x5FA0. By defining “LARGE_MEMORY” in the sample code, you can change the
expected address to 0xBFA0. If you are programming IRSampes to EEPROM, you must
include the MCE Info structure at the proper address or the MCE processor will not be

www.irf.com 32UG#0610

initialized. You can, of course, modify the sample code so that the MCE Info structure has
a different address or is not used at all.

3. If you are programming custom software to EEPROM, use of the MCE Info structure is
optional and can be excluded.

5.2.2 Programming EEPROM with the FS2
The FS2 TCL script option is used as an input file to the FS2 debugger. By executing this script in
the FS2 debugger environment the EEPROM can be directly programmed by using the SFR
registers. To use this programming method, please follow the instructions below.

1. Start the FS2 System Navigator. This should bring up the following window.

Figure 10—FS2 Debugger System Navigator Window

2. Next go to the ‘File Menu’ and select ‘Source…’

Figure 11—FS2 Debugger File Menu

www.irf.com 33UG#0610

3. Select the FS2 TCL output file with extension ‘.tcl’ and click ‘OK’. The script will execute

immediately.

When the script begins execution, it displays the message:
 Begin EEPROM Programming.
in the FS2 Console window. The script displays a period (“.”) for every 256 bytes that are
programmed to EEPROM. This process is slower than other EEPROM programming
methods because of the overhead of JTAG communication and SFR access, so please be
patient. When programming is complete the script displays the message:
 EEPROM Programming complete. Verifying.
and then displays a period for every 256 bytes that are read from EEPROM for comparison to
the programmed data. If an error is detected the script displays the message:

 xxx != yyy at address zzz

where xxx is the value read from EEPROM, yyy is the expected value and zzz is the
EEPROM address at which the error was detected. The script terminates after detecting a
single error.

If no errors are detected, the script displays the message:

 EEPROM verified; programming successful.

If there is a problem with the programming, try decreasing the Tck rate (using the FS2
Connect Dialog) from 500k to 100k or 50k.

6 Migrating from the F-version to the K-version
6.1 System Differences
6.1.1 Program and Data Memory Space
The OTP (One-Time Programmable) memory in the IRMCK3xx contains 64Kbytes of memory
space that is split between the 8051 microprocessor and the MCE. 56Kbyes of that memory is
reserved for 8051 program space, while the remaining allocation is used to load the 8K of RAM
available in the system. This 8K is split into a 0.5Kbyte zone for the MCE Data (Dual Port Shared)
RAM, 5.5Kbyte zone for MCE Program RAM, and 2Kbytes zone for 8051 local data RAM (Figure
12).

In the F-version of the IC, MCEDesigner Agent stores trace data in the 8051 program space
temporarily before it is transferred to the PC running MCEDesigner. The K-version can be run
with MCEDesigner, but the trace function is limited to 512 points instead of 1024, as the trace
data must be stored in the 8051 Local Data section of the RAM.

www.irf.com 34UG#0610

Figure 12—Memory Map of OTP

6.1.2 Bootload Sequence
When the controller is turned on, without an 8051 debugger connected, it will load the last
8Kbytes of OTP memory into the 8Kbyte RAM. This will effectively load the MCE program along
with any shared initial data. If a debugger is connected the bootload process will not occur to
prevent third parties from having access to the MCE program. The 8051 program space does not
get transferred to RAM, as the OTP memory is directly read by the 8051 microprocessor.

6.1.3 8051 and MCE Internal Clocks
Because the 8051 will execute its program directly from the OTP memory it must be constrained
to the maximum operating frequency of the OTP. In the IRMCK3xx the maximum OTP and,
therefore, the maximum 8051 frequency is 33Mhz. Because the MCE program is accessed via
RAM it is possible to run the MCE significantly faster so long as the 8051’s clock is divided.

The IRMCK3xx supports running the MCE clock at multiples of 1, 2, 3, and 4 times the 8051
clock. This means the maximum frequency of 128Mhz could be maintained for the MCE, while
the 8051 could run at 32Mhz. This would allow the OTP to operate below its maximum 33Mhz
limitation, while having the maximum amount of computational power available in the MCE. This
clock division is accomplished though two bits located at PLLF2[6:5]. These two bits will cause
the clock divider to work in the following manner (Table 5). It is important to note that all of the
UARTS, timers and all other clocked components except the MCE are on the slower clock.

PLLF2[6:5] MCE Clock Frequency 8051 Clock Frequency
0b00 MstrClk MstrClk/1
0b01 MstrClk MstrClk/2
0b10 MstrClk MstrClk/3

www.irf.com 35UG#0610

0b11 MstrClk MstrClk/4

Table 5—PPLF2 Register Options For Clock Dividing

The designer should ensure that timers and counters are correctly initialized if the 8051 frequency
changes when moving from the F to the K-version. A specific problem to watch for, which can
arise due to the different clock frequencies between the 8051 and MCE, is the servicing of the
SYNC interrupt. If the 8051 clock is too slow, then it may not be able to complete the interrupt
service routine (ISR) quickly enough. This problem can be solved by shortening the ISR or
reducing one or more pwm frequencies in the MCE.

Included in the iMotion software, in a directory called “MCEDesigner Agent_K”, are .hex files for
each part specifically to allow the designer to use the K-version with MCEDesigner. Note that in
these files, the MCE Clock is set to 128MHz and the 8051 Clock is 128MHz/4 = 32MHz.

6.1.4 UART Baud Rate
The UART in the F version had a single 8bit SFR to set the baud rate. The K version has added
an additional upper 8bit SFR so that a 16bit value is used for the baud rate. This allows a
minimum available baud rate of 36BPS. The new registers are U0BRH (SFR 0x93) and U1BRH
(SFR 0x9b).

6.1.5 8051 and MCE Memory Protection
To prevent third parties from connecting to the IRMCK3xx and downloading proprietary motor
control algorithms, it is not possible (without specifically enabling) to read the OTP contents from
external sources such as a debugger. When reading the OTP from a debugger, the memory will
be scrambled in a destructive manner. There is no way to recover the scrambled data that can be
read from a debugger.

This scrambling is, by default, always enabled and must be explicitly disabled during OTP
programming. The very last byte of OTP (address 0xFFFF) determines if scrambling is enabled. If
this byte is all 1s (0xFF) then scrambling is disabled. If this byte is any other value then
scrambling is enabled. An additional step is required before JTAG can properly read the OTP (if
the last byte is 0xFF); the JTAG interface must read this last byte. Upon reading this byte the
controller will determine if the OTP will be allowed unscrambled read access. Scrambling is not
disabled until 0xFF is read from the 0xFFFF address.

6.1.6 8051 Debugging
This feature of the IC should be kept in mind when attempting in debug the 8051. The debugger
(Keil) must first read the very last byte of memory so that scrambling is disabled. It is also
possible to have the 8051’s program read this last byte of memory so that memory protection is
disabled automatically.

When debugging, it is still possible to enter a breakpoint into the 8051 program even though the
memory is OTP. A single breakpoint can be entered by way of the FS2 debugger that will be
trapped when set. This breakpoint must then be cleared so that a new breakpoint can be defined.

6.2 Using MCEProgrammer2 to Program the OTP
MCEProgrammer2 is a software utility used to create EEPROM and OTP images, and can
perform direct OTP programming by communicating with the FS2 JTAG debugger or a USB-
based Corelis (USB-1149.1/E) JTAG device. This utility can be used to import a design’s MCE
program (.bin file) and 8051 program (.hex file) and then program it to OTP.

www.irf.com 36UG#0610

To program the OTP, the user can either design their own hardware to communicate with the
IRMCK3xx through the JTAG pins, or use the IRMCS3xxPROG Programming Board and
MCEProgrammer2 utility provided by IR. The JTAG header on the Programming Board is
designed to connect directly to the Corelis JTAG device. To use the FS2 debugger with the
Programming Board, some of the pins must be rewired. Programming the OTP is considerably
faster using Corelis than with FS2.

The Programming Board has an IRMCK3xx socket on it and comes with a 12V power supply. An
on board power supply provides 3.3V, 1.8V and 6.75V to the OTP part. Connect the JTAG pins
to the JTAG controller (Corelis USB-1149.1/E JTAG device), which connects to the PC via a USB
port. There is an OTP Programming board for each of the versions, IRMCK341, IRMCK343,
IRMCK371, IRMCK311 and IRMCK312.

If the FS2 debug pod is used for programming the OTP, then the user must setup the location of
the FS2 Console. From Tools, select “FS2 Setup” and enter the location of the FS2 executable.
If the FS2 program is installed in the default location, then this location will be:

C:/Program Files/Fs2/m8051ew/Bin/clisysnav.exe

The MCEProgrammer2 software utility provided by IR performs the OTP programming. At the
main window, select the “Product” name from a list (i.e. IRMCx341), and select the “Operation”. If
OTP programming is desired, then choose “Program OTP via Corelis (or FS2) JTAG” and provide
the locations of the 8051 .hex file and MCE .bin file. To protect the contents of the OTP from
being read back, check the “Protect OTP” box. By default, there is no protection and the contents
of the OTP can be read back properly. “MCE Info Structure Address” allows the user to change
the location of the MCE Info structure, which is only required in order to work with MCEDesigner.
There is a default location for each product. After all the options are set, click “Execute” and a
progress bar window will pop up to show the progress. If the FS2 debugger is used, then the FS2
console window will come up. After the programming is done, MCE Programmer will
automatically read back the OTP content and verify if the programming is correct. If the
verification fails, an error window will appear giving the address of the first byte with incorrect
data.

6.3 Creating Custom Programming Methods
IR provides a programming kit to aid in programming the OTP. If the user chooses to design a
custom programming method, detailed specifications are given in this section.

6.3.1 OTP Image Generation
MCEProgrammer is a utility that can be used to create IRMCx300 OTP memory images. These
.bin files can then be integrated in any custom OTP programmer. The binary file created is the full
address range of OTP (64K) and goes from address 0x0000 to 0xFFFF.

6.3.2 JTAG Test Mode
The IRMCK3xx has a single JTAG port that can be used to either debug the embedded 8051
microprocessor or to program the OTP memory. To program the memory the controller must be
put into ‘Test Mode’. Once in this mode the OTP memory will be available over the JTAG
interface.

6.3.3 Programming Pins
The OTP programming is performed over the standard JTAG interface available on the
IRMCK3xx. In addition to this standard interface, a supply voltage of 6.75V must be supplied to
the OTP during programming. This voltage is supplied to the dual-purpose pin SCL/VPP. When
6.75V is supplied to this pin it will act as the supply rail for the internal OTP memory. If performing
programming in-circuit it is important to either verify that external components can withstand
6.75V or isolate the SCL/VPP pin during programming. An easy way to isolate these devices is to

www.irf.com 37UG#0610

have a jumper present on the SCL line; after the OTP is programmed the jumper can be put in
place.

Figure 13—EEPROM Isolation Example

During OTP read mode, the VPP pin can be at either VDD or VSS, or floating. When OTP is
configured into program mode, the VPP pin has to be high at least 10ns before the rising edge of
TCK (JTAG clock input pin). When OTP is configured back to read mode, the VPP pin has to be
high at least 15ns after the rising edge of TCK, as shown in the timing diagram below. VPP high
requires a typical 6.75V supply voltage, with 6.5V minimum and 7.0V maximum.

a b c d

tdTvphTvpsta

PTM=0PTM=2

TCK

TDI/TMS

VPP

Note: PTM=2 means OTP is configured into program mode; PTM=0 means OTP is configured
back to read mode. Tvps=10ns, Tvph=15ns.

6.3.4 JTAG Overview
The JTAG interface in the IRMCK3xx is the standard four pin configuration. Data is shifted into
TDI and shifted out of TDO. The state machine is controlled via the TMS line and TCK is the
clock for communication. (Table 6)

Pin Name TCK TMS TDI TDO
Function Clock State Machine Serial Data In Serial Data Out
Direction Input Input Input Output

Table 6—JTAG Pins

www.irf.com 38UG#0610

6.3.5 TCK Cycle
Over the course of the JTAG programming cycle, data should be loaded into TMS and TDI on the
negative edge of TCK. TDO will change output states on the negative edge of TCK. Data will be
sampled from the TMS and TDI lines on the positive edges of TCK.

Figure 14—Basic JTAG Cycle

6.3.6 JTAG Registers
Two registers are present in JTAG implementations, IR (Instruction Register) and DR (Data
Register). The JTAG interface will shift in and out the IR and DR registers, respectively, as it
performs functions. To perform a command an instruction code is loaded into IR, and then the
data associated with that command is loaded into DR. The order of IR and DR loads is dependent
on the type of command being performed. There are additional registers defined for performing
burn and verify operations listed below (Table 7). These registers can be written to and read from
with specific IR values. It should be noted that the DR register is not a physical register, but can
treated as one with respect to how it behaves in the system. More information can be found in
IEEE Std 1149.1.

Register Width Description
IR 8 bits Instruction Register
DR 16 bits Data Register
otp_setup 8 bits The OTP programming configuration register
otp_wr_timer 8 bits Number of TCK clocks X 64 to write one byte of data
otp_jtag_address 16 bits The current address of OTP that data will be burned to
otp_data 8 bits The data byte that will be burned to OTP
test_modes 16 bits Defines what mode the test interface is in (OTP Burn-in)

Table 7—The OTP Programming Registers

OTP_Setup[8:0]
The OTP_Setup register contains configuration information for accessing the OTP. It is defined
as follows.

Address Advance SKIP POEB PTM
7 6 5 4 3 2 1 0

OTP_Setup.7 -
OTP_Setup.5

AdAdv[2:0] Number of address to advance in auto-increment modes (#
to advance = 2^ OTP_Setup[7:5])

OTP_Setup.4 SKIP Skip OTP_Addr[5:4]:0000 in auto-increment mode
OTP_Setup.3 POEB OTP Output Enable Bit

1: Enables OTP memory read access

www.irf.com 39UG#0610

0: Must be zero for programming

OTP_Setup.2 –
OTP_Setup.0

PTM[2:0] Program Test Mode
000 = Read OTP
010 = 1x Normal Programming
011 = 4x Accelerated Programming

Table 8—OTP_Setup Register Definition

OTP_Wr_Timer[7:0]
This register adjust how long a OTP write operation should last. The write time is
OTP_Wr_Timer[7:0] X 64 TCK cycles. This value then is dependent on the chosen TCK rate and
minimum OTP write time.

OTP_JTAG_Address[15:0]
This register is the address that the next OTP data write command will go to. This is where the
value written to DR will be written to OTP_JTAG_Address[15:0]. This register will auto-increment
the OTP address after each write or read when OTP_Setup.4 is enabled.

OTP_Data[7:0]
This register is the data that the next OTP data write command will use to write to
OTP_JTAG_Address[15:0]. This register is normally not accessed directly.

Test_Modes[15:0]
The Test_Modes[15:0] register defines what specific functions are to be performed by the test
interface of the IRMCK3xx controller. Only one mode is needed for OTP programming, which is
entered by writing 0x0002 into this register. This allows the TCK clock input to become the main
system clock and, which allows synchronization between the control interface and the OTP
memory.

6.3.7 IR Write Commands
IR Command Command Description

0x00 Read JTAG TAP controller ID
0xF5 Enter the ‘test mode’ for OTP memory access
0xF6 Exit the ‘test mode’ and return to standard 8051 JTAG interface
0x70 Write contents of DR Test_Modes[15:0]
0x50 Write contents of DR to OTP_Setup[7:0]
0x51 Write contents of DR to OTP_Address[15:0]
0x52 Write contents of DR to OTP_Data[7:0]
0x54 Write contents of DR to OTP_Timer[7:0]
0x71 Enable auto-increment burn mode for OTP programming (see below)

Table 9—IR Write Command List

In order to perform these write commands the following actions should be taken.

Step 1:
 Load IR
Step 2:
 Load DR
Step 3:

System will auto-execute instruction with new DR

The 0x71 auto-increment command is slightly different in its operation. It exists to reduce the
number of commands during programming. When 0x71 is set in IR every following DR load will
cause that data to be written to the OTP and then automatically increment the

www.irf.com 40UG#0610

OTP_Address[15:0] register. Therefore when programming the IR is set to 0x71 and then DR
loads are repeated until the memory is fully programmed.

6.3.8 IR Read Commands
IR Command Command Description

0x60 Read OTP_Setup[7:0] to DR
0x61 Read OTP_JTAG_Address[15:0] to DR
0x62 Read OTP_Data[7:0] to DR
0x63 Read OTP_Wr_Timer[7:0] to DR
0x64 Read OTP_Wr_Counter[15:0] to DR
0x72 Enable auto-increment read mode for OTP verification

Table 10—IR Read Command List

When the IR register is loaded with a read command it will return the specified register value to
the DR register. This value can then be returned by reading DR and shifting it out over the TDO
line.

6.3.9 TMS State Machine Diagram
This diagram describes is the standard JTAG state machine. Through use of only the TMS signal
line either IR and DR values can be loaded into the system. For more information about JTAG
refer to IEEE Std 1149.1.

Figure 15—JTAG TMS State Diagram

6.3.10 OTP Programming Example
Write 0xF5 to IR - Enter test mode
Write 0x70 to IR then 0x0002 to DR - Set TCK to main system clock
Write 0x54 to IR then 0x07 to DR - Set OTP_Wr_Timer to 0x07
Write 0x50 to IR then 0x0A to DR - Set OTP_Setup to 0x0A

www.irf.com 41UG#0610

Write 0x51 to IR then 0x0205 to DR - Set OTP_Address to 0x0205
Write 0x71 to IR - Enable auto-increment OTP write
Write 0xA2 to DR - Write 0xA2 to OTP address 0x0205
Toggle TCK - # of pulses according to Wr_Timer
Write 0xA3 to DR - Write 0xA3 to OTP address 0x0206
Toggle TCK - # of pulses according to Wr_Timer
…
Write 0xF6 to IR - Exit test mode

6.3.11 OTP Verification Example
Write 0xF5 to IR - Enter test mode
Write 0x70 to IR then 0x0002 to DR - Set TCK to main system clock
Write 0x50 to IR then 0x00 to DR - Set OTP_Setup to 0x00
Write 0x51 to IR then 0xFFFF to DR - Set OTP_Address to 0xFFFF
Write 0x72 to IR - Italic steps disable OTP read protection
Read DR - Dummy read
Write 0x51 to IR then 0x0205 to DR - Set OTP_Address to 0x0205
Write 0x72 to IR - Enable auto-increment OTP read
Read DR - Dummy read
Read DR - Read OTP address 0x0205
Read DR - Read OTP address 0x0206
…
Write 0xF6 to IR - Exit test mode

6.3.12 OTP IR Load Example

Figure 16—JTAG Load 0xF5 to IR (Enter Test Mode)

6.3.13 OTP Timing Information
There are three important parameters required when programming the OTP through the JTAG
interface. This information is listed below.

Parameter Symbol Min Max Unit
Clock Cycle Time Tcyc 25 - ns
Program Pulse Width Tpw 90 110 μs
Program Pulse Interval Tpwi 5 - μs

Table 11—Critical OTP Programming Timing Information

www.irf.com 42UG#0610

	
	1 Introduction
	1.1 Purpose
	1.2 Requirements
	1.2.1 FS2 USB-based Debugger

	1.3 Overview
	1.4 Boot Process
	1.5 Memory Map
	1.5.1 The Dual-Port RAM
	1.5.2 8051 vs. MCE Addressing
	1.5.3 Byte Ordering
	1.5.4 Synchronizing 8051 Register Access with the MCE

	2 MCEDesigner Agent
	2.1 Sequencer
	2.2 MceInfo Structure

	3 Setting Up the 8051 Development Tools
	3.1 Software Setup
	3.2 Hardware Setup
	3.3 Keil uVision Project Options

	4 Sample Code
	4.1 Sample Code Structure
	4.1.1 Clock Frequency
	4.1.2 Registers
	4.1.3 Files and Functions of Sample Code

	4.2 Running the Motor
	4.2.1 Drive Configuration
	4.2.2 MCE Header File
	4.2.3 Motor Functions

	4.3 Extending Functionality
	4.3.1 Modifications Required For New MCE Register Names
	4.3.2 Considerations for IRMCx341/371
	4.3.3 Considerations for IRMCx343
	4.3.4 Considerations for IRMCx311/312

	4.4 Troubleshooting

	5 Programming the Control IC
	5.1 Programming the EEPROM with MCEDesigner
	5.1.1 Downloading 8051 Code to EEPROM with MCEDesigner
	5.1.2 Restoring the Original 8051 Code

	5.2 Using MCEProgrammer
	5.2.1 Generating an EEPROM Image
	5.2.2 Programming EEPROM with the FS2

	6 Migrating from the F-version to the K-version
	6.1 System Differences
	6.1.1 Program and Data Memory Space
	6.1.2 Bootload Sequence
	6.1.3 8051 and MCE Internal Clocks
	6.1.4 UART Baud Rate
	6.1.5 8051 and MCE Memory Protection
	6.1.6 8051 Debugging

	6.2 Using MCEProgrammer2 to Program the OTP
	6.3 Creating Custom Programming Methods
	6.3.1 OTP Image Generation
	6.3.2 JTAG Test Mode
	6.3.3 Programming Pins
	6.3.4 JTAG Overview
	6.3.5 TCK Cycle
	6.3.6 JTAG Registers
	6.3.7 IR Write Commands
	6.3.8 IR Read Commands
	6.3.9 TMS State Machine Diagram
	6.3.10 OTP Programming Example
	6.3.11 OTP Verification Example
	6.3.12 OTP IR Load Example
	6.3.13 OTP Timing Information

